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Abstract

Different geostatistical methods are used to interpolate the spatial distribution of the foliar magnesium content of Silver fir
and Norway spruce in the Black Forest. The data analysed are from a monitoring survey carried out in 1994 in the forest of
Baden-Württemberg, a federal state in the south-west region of Germany. In this survey many potential explanatory variables are
collected. The aim of this paper is to identify the best prediction method that can be useful in the future for cause–effect studies and
environmental modelling. At the same time, causal relationships between the response variable and the predictors are investigated.
Therefore, geostatistical methods with lowest prediction errors which simultaneously provide the highest explanation value had
to be identified. The performance of different methods is measured using cross-validations techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1994 the forest health status has been monitored
in Baden-Württemberg using different survey schemes
where a number of different possible influential fac-
tors are recorded. A justification for these monitoring
programmes is the hypothesis that the deterioration
of forest crown condition is of a chronic nature. The
deterioration is meant to be caused by acidification
and washing out of essential alkaline macro nutri-
ents in the root area which has a negative influence
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on forest nutrition and this finally causes the loss of
needles and leaves (seeAnon, 1993). This acidifica-
tion is caused by industrial emissions and affects soil
chemistry including nutrient and metal availability.
In some of the areas of Baden-Württemberg the soils
are already acidic, e.g. in the Black Forest where
the geology is mainly siliceous bedrock such granite
and gneiss and does not have a high buffer capacity
against the acids. When acid deposition occurs on not
well-buffered soils, alkaline macro nutrients includ-
ing potassium, calcium and magnesium are readily
washed out, making them unavailable to the forest as
nutrients. Especially, the supply of magnesium devel-
ops towards deficiency at the crystalline bedrock areas
of the Black Forest, where the magnesium stock, is
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naturally low. Therefore, the magnesium supply of
trees is supposed to be a key factor in forest deterio-
rations(Anon, 1993). Lots of efforts have been done
in the last years to describe and justify the current
state of deterioration of the forest in Germany and
more in general in all Europe. In particular models
have been developed to link the effect of soil acidi-
fication with the tree growth and the change in nutri-
ents (see for instanceMohren and Ilvesniemi, 1995;
Mohren et al., 1995in which different models are
proposed and analysed to study the effects of air pol-
lution and soil acidification in the forest growth and
indirectly in nutrient supply for Norway Spruce in
Germany).

In this work, we suppose the following order of de-
pendence among influencing factors: nature and mag-
nitude of deposition of acidity and nitrogen→ soil
condition→ forest nutrition→ crown condition. In
this sense we do not expect to find some acute impact
of air pollutants rather then a chronic effect of step by
step reduced buffering capacity and nutrient availabil-
ity in soils, which leads at the end to forest damage
(seeWilpert, 2002; Wilpert et al., 2000).

In this paper, we are investigating only a small part
of the overall goal of the study. The aim is to es-
tablish a model for predicting magnesium contents in
the needles (a) by using a trend function of soil con-
dition, other site and tree characteristics, and/or (b)
by exploiting spatial autocorrelation via geostatistical

Fig. 1. Scheme of the goals and abilities of the different methods used for evaluation.

methods. In particular, we will compare the prediction
performances of different methods currently used in
spatial studies, such as a model with independent er-
rors, ordinary kriging, cokriging and kriging with ex-
ternal drift. The goals of each method are summarised
in Fig. 1. Identifying a best prediction method can be
useful in the future to predict the magnesium in the
needles at unsampled locations. Maps of magnesium
are needed for ecosystem managements purposes, for
instance to decide which area of the forest needs some
counteractions against soil acidification like liming.

2. The data

The data are from a monitoring programme carried
out by the Forest Research Centre Baden-Württemberg
(FVA) in 1994: the survey of emission impact and for-
est nutrition (Imissionsökologische Waldzustandser-
hebung und Ernährungsinventur (IWE)). The variable
of interest is the magnesium (Mg) content (g/kg) in
needles which were collected in the survey: 800 loca-
tions on a 4 km× 4 km grid needles of silver fir and
spruce trees were sampled for the analysis of the main
macro nutrients.

Possibleexplanatory variableswhich were col-
lected in the IWE are: foliar nutrient contents such
as calcium (Ca), potassium (K), manganesium (Mn),
phosphorus (P) and nitrogen (N), tree characteris-
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tics such as the age (BAlter) and the tree species
(fir/spruce) (BArt), landscape and topographic charac-
teristics such as geological substrate (Geol), direction
of slope (Hang), gradient of slope (Hangneig), relief
form (GForm), type of situation (Lage), soil charac-
teristics such as soil texture (Boden), soil type (BTyp),
soil depth (Gruend), soil water budget (Wasser),
trophic class of the soil (Naehr) and humus form (Hu-
mus). In addition location, i.e. thex (Rechts) andy
(Hoch) co-ordinates and the altitude (HoehenL), can
be used to model the trend.

Most of these potential predictor variables were as-
sessed by the survey personnel on an ordinal scale
and therefore contain a subjective uncertainty. Nutri-
ent data, age and co-ordinates were measured.

Due to its relative homogeneity in geology (e.g. no
extra range substrates like lime stone areas with to-
tally differing nutritional conditions exist there), we
restrict the analysis to the region of the Black Forest
(seeFig. 2). Additionally in this area the forest cover

Fig. 2. Overview map. The area of the Black Forest grey shaded. The position of sampling points are marked with crosses and dots.

amounts to a proportion of about 65% of the land-
scape and it is characterised by large rather then small
patch-like stands.

3. Statistical methods

3.1. Model with independent errors

Initially, we use a model with independent errors to
model the data using a trend function of the explana-
tory variables on soil condition and other characteris-
tics. The model has the form:

E(y) = β0 +
∑

k

βkxk (1)

Using such a model implies the assumption that the
data are independent. Here independence of our spa-
tially referenced data is not very likely. An alternative
for interpolating and predicting the magnesium con-
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centrations in the needles taking into account the spa-
tial correlation of the data is geostatistics(Matheron,
1963).

3.2. Geostatistical methods

The geostatistical approach is based on the assump-
tion that sample values are related to one another in
a way which is dependent on their distance. Then a
primary aim of geostatistics is to estimate the spatial
relationship between sample values. This estimate is
used to make spatial prediction of unobserved values
from neighbouring samples and to give an estimate of
the variance of the prediction error.

In geostatistics(Cressie, 1993; Diggle et al., 1998)
it is assumed that the dataYi sampled at the locations
si, i = 1, . . . , n, are partial realizations of a Gaussian
random process{Y(s)|s ∈ D ⊂ Rd} such that,∀s ∈ D:

E[Y(s)] = µ(s) (2)

and the variance

var[Y(si) − Y(sj)] = 2γ(si, sj) (3)

exists. The process is called intrinsic stationary if its
semi-variogramγ(si, sj) depends only on the distance
betweensi andsj (and eventually on the direction of
the vectorh = si − sj) but not on their locations.

The goal of kriging is to predict in an optimal way
the value of the processY(·), at an unsampled location
s0 from a linear combination of the observed values
Yi. Ŷ (s0) = ∑n

1=1 ωiYi. The weightsωi are chosen in
order to minimise the mean square prediction error

MSE = E[(Y(s0) − Ŷ (s0))
2] (4)

subject to the unbiasedness constraintsE[Ŷ (s0)] =
E[Y(s0)]. The resulting predictor has minimum vari-
ance, the so called kriging variance, within the class
of unbiased predictors.

The kriging procedure is optimal in the sense that it
gives optimal predictions when the covariance struc-
ture is known. The conventional kriging approach
consists inplug in estimated parameter values and
proceeds as if the estimates were the true values. In
practice, the semi-variogram is estimated from the
data using the empirical semi-variogram given by

γ̂(h) = 1

2N(h)

N(h)∑
i=1

[Y(si + h) − Y(si)]
2 (5)

where N(h) is the number of pairs of observations
in D which are at distanceh. If outliers are present
we can use a robust semi-variogram estimator (see
Cressie, 1993). It is necessary for the semi-variogram
to beconditionally negative definiteto guarantee the
positiveness of the estimation variance (seeChilés and
Delfiner, 1999). For this reason we need to fit a theo-
retical model to the empirical semi-variogram graph.

This theoretical curve is chosen from a class of ide-
alised semi-variogram models. Here we consider the
exponential model which has the form

γ(h, α) = 1 − exp

(
−h

α

)
, h ≥ 0 (6)

One of the common methods for fitting the semi-vari-
ance model is to fitby eyeor by somecurve fitting
alghoritm a theoretical curve to the empirical semi-
variogram. An alternative approach is to compute the
maximum likelihood estimator of the model parame-
ters.

3.3. Ordinary kriging and lognormal kriging

Ordinary kriging refers to spatial prediction under
the assumptions thatµ(s) = µ is constant and

n∑
i=1

ωi = 1 (7)

(this last assumption guarantees unbiasedness). From
standard theorems (seeCressie, 1993) we can easily
derive the minimum mean square error predictor for
Y(·) and the corresponding kriging variance.

If the stochastic process under study is non-Gaus-
sian, we often try to make it Gaussian by a prior
transformation of the variable. Then the kriging
methodology is applied to the transformed variable.
However the back-transformed value is usually biased
and we have to use approximate expressions for the
unbiased predictor and the mean-squared prediction
error (see trans-Gaussian kriging inCressie, 1993). In
this paper we restrict our attention to the lognormal
transformation, i.e. when the logarithm of the process
under studyW(s) is Gaussian (Y(s) = logW(s)). In
this specific case, we have an exact expression for the
unbiased predictor of our initial variable and for its
mean-squared prediction error (seeCressie, 1993).
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Other possible extensions relaxing the Gaussian as-
sumptions are available in the literature (e.g.Diggle
et al., 1998; Gotway and Stroup, 1997).

3.4. Universal kriging and kriging with external drift

Universal kriging refers to spatial prediction under
the assumptions that there is a trend in the sample val-
uesµ(s) = ∑n

i=1 βifi(s), where theβi are fixed un-
known parameters and thefi are known functions of
the spatial locations chosen to model the trend. Partic-
ular cases are a linear or a polynomial trend surface.
The unbiasedness condition becomes∑

ωifi(si) = fi(s0) (8)

Universal kriging involves removing the trend from the
sample values and study residuals variation. For de-
tails in the minimisation procedure seeCressie (1993)
or Diamond and Armstrong (1984). If the trend is a
function not only of the co-ordinates of the locations
but also of other covariates the minimisation procedure
is called kriging with external drift (KED) or kriging
with a trend model. In this case we have:

E[Y |xi1, . . . , xin ] = β0 + β1xi1 + · · · + βnxin (9)

where xi1, . . . , xin are the observed covariates (for
more details seeRoyle and Berliner, 1999; Gotway
and Hartford, 1996; Deutsch and Journel, 1992). Here
we use standard model selection techniques to select
the appropriate trend function in the data, that is we
use a linear model as inEq. (1)to select the variables
for the trend function. The coefficients inEq. (9)are
estimated within the kriging procedure.

3.5. Cokriging

If we want to consider several response variables
simultaneously cokriging can be used. It accounts
for the spatial cross correlation between primary and
secondary variables. In contrast to KED, in cokriging
the explanatory variables are not regarded as fixed,
but are themselves considered as spatial random vari-
ables with an associated variogram. Besides fitting
a semi-variogram model to the response variable,
cokriging requires to fit a semi-variogram model
to the secondary variable and a cross-semivariance
model. We refer toCressie (1993), Goovearts (1997),
Wackernagel (1998)for details.

3.6. Cross-validation

Since we are mostly interested in how well the dif-
ferent methods perform in terms of prediction, an ap-
propriate criteria of comparison is the prediction error.
In order to estimate the prediction error reliably we
use leave-one-out cross-validation to perform model
validation. This procedure removes a single observa-
tion at a time from the data set and the model is fitted
to the remaining observations. Then the actual out-
comeYi is compared with the predicted outcomeŶi

using the model based on the remainingn − 1 obser-
vations. The process is repeatedn times to obtain an
average accuracy that can be expressed by the mean
squared prediction error

∑
(Yi − Ŷi)

2 at each location
(see for instanceDavison and Hinkley, 1997; Isaaks
and Srivastava, 1989). The method which leads to the
smallest estimated prediction error is preferred.

4. Data analysis and results for the magnesium in
the needles

4.1. Exploratory analysis

Magnesium content in the needles is not normally
distributed. In order to apply kriging and fit a lin-
ear regression to these data we consider as the re-
sponse variable the logarithm of the magnesium. The
data set contains all survey locations in which mag-
nesium in the needles was measured. In a first step
we have screened the explanatory variables for cor-
relation. If the correlation between two variables was
higher than 0.5, we have chosen the variables which
have a stronger effect on the response variable in terms
of regression analysis in which the two correlated vari-
ables were used separately. Hence, we left out the fac-
tor tree species (BArt) which was strongly correlated
with the calcium concentration in the needles (Ca).
We also decided to leave out the factor geological area
(Geol) because it was strongly correlated withx and
y co-ordinates and had a prohibitively large number
of different categories (18) for a reasonable model in-
terpretation. Both factor inter-correlations have to be
expected since Silver fir has systematically higher Ca
contents in the needles than spruce and the geological
areas of the Black Forest display a rather consequent
order from the Triassic sandstones in the north to the
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Table 1
Correlation between the response variable log(Mg) and possible explanatory variables containing tree specific characteristics calcium (Ca),
manganese (Mn), potassium (K), phosphorus (P), nitrogen (N), age (BAlter) and tree type (BArt)

log(Mg) Ca Mn K P N Balter Bart

log(Mg) 1 0.73 0.09 0.25 0.24 −0.02 0.30 0.71
Ca 0.73 1 0.36 0.19 −0.007 −0.05 0.26 0.71
Mn 0.009 0.36 1 0.15 −0.16 −0.02 −0.08 0.36
K 0.25 0.19 0.15 1 0.26 0.16 0.13 0.38
P 0.24 −0.007 −0.16 0.26 1 0.37 0.12 0.13
N −0.02 −0.05 −0.02 0.16 0.37 1 −0.19 −0.11
BAlter 0.30 0.26 −0.08 0.13 0.12 −0.19 1 0.33
BArt 0.71 0.71 0.36 0.38 0.13 −0.11 0.33 1

Table 2
Correlation between the response variable log(Mg) and possible explanatory variables containing geographic and stand conditions,x-co-
ordinate (Rechts),y-co-ordinate (Hoch), soil depth (Gruend) trophic class of the soil (Naehr), relief (GForm ), soil type (BTyp) and altitude
(HoehenL)

log(Mg) Rechts Hoch Gruend Naehr GForm Btyp HoehenL

log(Mg) 1 −0.17 −0.17 −0.002 0.18 −0.07 −0.11 −0.09
Rechts −0.17 1 0.76 0.01 −0.15 −0.1 0.3 −0.09
Hoch −0.17 0.76 1 0.02 −0.05 0.05 0.3 −0.4
Gruend −0.002 0.01 0.02 1 0.38 −0.08 0.08 −0.13
Naehr 0.18 −0.15 −0.05 0.38 1 −0.009 −0.25 −0.27
GForm −0.07 −0.1 0.05 −0.08 −0.009 1 −0.02 −0.17
BTyp −0.11 0.3 0.3 0.08 −0.25 −0.02 1 −0.005
HoehenL −0.09 −0.09 −0.4 −0.13 −0.27 −0.17 −0.005 1

granite and gneiss bedrocks in the south. InTables 1
and 2we have the correlation of the response variable
log(Mg) and some possible explanatory variables.

4.2. Model with independent errors results

The following model was fitted:

E(log(Mgi)) = β0 + β1Cai + β2Pi + β3Hochi

+ β4Mni + β5Ki + Gruendk1

+ β6Ni + Naehrk2 (10)

where the observationi is at locationyi with levelsk1
for the soil depth andk2 for the nutrient balance.

This model choice was the result of a back-
ward model selection process (e.g.Burnham and
Anderson, 2003). More precisely we started from a
general model containing all the explanatory vari-
ables retained from the preliminary selection and
then used backward elimination for model selec-
tion. The idea of backward elimination is to fit all
models obtainable by deleting a single term from

an initial model and computing theBayesian Infor-
mation Criterion (BIC) for each of them (BIC=
−2 maximised log likelihood+p log(n) wheren is the
sample size andp is the number of parameters). At
each step the model with the lowestBIC is preferred.
The estimated coefficients of model inEq. (10) are
given inTable 3. Calcium content in the needles is the

Table 3
Parameter estimates for the selected model with independent errors
(drift parameters of KED)

Estimate Standard error

Intercept 9.752 2.428
Ca 0.144 0.006
P 0.265 0.040
Hoch −0.002 0.000
Mn −0.036 0.012
K 0.020 0.007
Gruend 2 0.066 0.038
Gruend 3 −0.057 0.054
N −0.017 0.007
Naehr 2 −0.013 0.039
Naehr 3 0.112 0.051
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Fig. 3. The empirical semi-variogram of log(Mg) with fitted semi-variogram models using maximum likelihood (ML) and the fit by eye.

strongest predictor for the magnesium contents in the
needles. The model explains about 67% of variation
(R-squared value) in the data.

4.3. Cross-validations results

We use the log kriging, i.e. we apply kriging proce-
dures to the logarithm of the magnesium in the nee-
dles. In order to reveal the possible spatial structure
of the response variable, we have computed its semi-
variogram.The empirical semi-variogram is fitted us-
ing an exponential model.Fig. 3 shows the empirical
semi-variogram of the original data and the two the-
oretical semi-variogram fitted by eyes and using the
maximum likelihood estimation method. As you can
see in the picture, the semi-variogran reaches a limit-
ing value (the sill) at about 0.2. This means that for
a distance (the range) bigger then 3 km the data are
not correlated. The behaviour of the semi-variogram
does not suggests the presence of a trend in the ge-
ographical co-ordinates. This observation suggests us

to use ordinary kriging for prediction and we compare
it with the kriging with external drift. For the drift
we use the results of the model selection procedure
for the model with independent errors inEq. (10)(the
corresponding semi-variogram is shown inFig. 4). To
confirm the hypothesis of absence of a strong trend in
the geographical co-ordinates, we compare the predic-
tion results reached with ordinary kriging with those
of universal kriging. Covariance parameters are es-
timated using the maximum likelihood method and
the estimates for OK, UK and KED are shown in
Table 4. We also consider cokriging including in the
kriging procedure the continuous variables Ca, P and

Table 4
Estimates of covariance parameters for OK, KED and UK

Partial sill Range Nugget

OK 0.1861 2.948 0
UK 0.1801 2.798 0
KED 0.0642 1.914 0
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Fig. 4. Empirical and fitted semi-variogram of the residuals of model(10).

K. Fig. 5 show the cross-semivariogram models fit-
ted for the cokriging method. The results of the mean
squared prediction errors with the various methods
were estimated using leave-one-out cross-validation
and are displayed inTable 5. The leave-one-out cross-
validation using the model with independent errors re-
sults in a mean squared prediction error of 0.096. All
the kriging methods reduce the mean squared predic-
tion error. Ordinary kriging yields only a small im-
provement compared to the model with independent
errors. Including more than one variable in the krig-
ing process reduced the error to 0.07 (CK). KED gives

Table 5
Mean squared prediction error for log(Mg) from the model with
independent errors, ordinary kriging (OK), universal kriging (UK),
kriging with external drift (KED) and cokriging (CK)

Independent
errors

OK UK KED CKa

mean squared error 0.096 0.091 0.092 0.048 0.070

a Cokriging was performed with variables Ca, P and K.

the lowest mean square prediction error (0.048). As
expected UK does not improve the prediction with re-
spect to OK.Table 3shows the values of the Bayesian
Information Criteria (BIC) computed for OK, UK and
KED. Once again the overall conclusion is that “best”
results are reached using kriging with external drift
and that universal kriging is not preferred to ordinary
kriging.

For OK, UK and KED theR packagegeoR (Ribeiro
and Diggle, 2000)was used and for cokriging the
ISATIS package was used(Bleines et al., 2000).

5. Discussion

For predicting the logarithm of magnesium contents
in the needles of spruce trees in the Black Forest we
have used four models:

1. a model with independent errors,
2. ordinary kriging (OK),
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Fig. 5. Cross-semivariogram models fitted for the cokriging.

3. kriging with external drift/kriging with a trend
model (KED),

4. cokriging (CK).

In comparison to OK, the model with independent
errors, KED and CK allow to incorporate explana-
tory information such as other nutrients, tree char-
acteristics, soil characteristics or locational variables.
The semi-variogram of the logarithm of magnesium
in Fig. 3showed that spatial correlation is present, but
no strong spatial trend exists. This hypothesis is val-
idate by the fact that UK does not improve the pre-
diction compared with OK. This observation suggests
to use geostatistical methods such as OK, KED and
CK, which take into account the spatial correlation.
It still seems worthwhile to utilise the variables se-
lected for the model with independent errors to es-
tablish the trend function in KED which also consid-
ers spatial correlation. KED performed best in terms
of prediction; it halved the mean squared prediction
error in comparison to OK and the model with inde-
pendent errors. The prediction error of CK is smaller
than for OK. But compared to KED, CK does not

have the benefit of allowing for a trend function with
categorical variables. The model with independent er-
rors and OK yield similar mean squared prediction
errors. The great advantage of OK compared to the
other methods is that explanatory information, which
might be expensive to measure is not required. The
advantage of OK and CK is that fine grid map predic-
tions can be produced for a particular variable with-
out need of further information. Maps of magnesium
contents in needles are further needed for forest man-
agement purposes, for instance to decide which ar-
eas of the forest need some treatment, e.g. fertilisa-
tion or liming with dolomite. For the model with in-
dependent errors and KED this is not easily accom-
plished since to predict such maps the explanatory in-
formation must be available on a fine grid (in addi-
tion to the survey location used for fitting the trend
model).

Although we set ourselves the goal of identifying
the best prediction method, we have also identified a
procedure which allows the investigation of causal re-
lationships at the same time. That is carrying out a
model selection procedure for a model with indepen-
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dent errors as an initial step and then using the selected
model in KED.

The fact that the model with independent errors
procedure identified the Ca contents of needles as
strongest and positively correlated predictor for the
Mg contents was unexpected concerning an uptake an-
tagonism between these elements as commonly pos-
tulated in the literature on tree nutrition(Fiedler et al.,
1973; Hüttl, 1991). Our contradictory finding may be
interpreted as an indicator for the existence of an ex-
ternal factor as for instance the deposition load which
is afflicting the health of the trees, e.g. by lowering
the effectiveness of roots in nutrient uptake as a whole
and is thus disturbing the natural reaction patterns.
This example should explain the power of KED for
causal interpretation besides its high performance in
prediction.
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